Files
godot-shader-experiments/addons/gecs/tests/performance/test_cache_key_perf.gd
2026-01-15 15:27:48 +01:00

173 lines
5.6 KiB
GDScript

## Cache Key Generation Performance Tests
## Tests the performance of cache key generation with different query complexities
extends GdUnitTestSuite
var runner: GdUnitSceneRunner
var world: World
func before():
runner = scene_runner("res://addons/gecs/tests/test_scene.tscn")
world = runner.get_property("world")
ECS.world = world
func after_test():
if world:
world.purge(false)
## Test cache key generation with varying numbers of components
## This tests the raw cache key generation performance
func test_cache_key_generation(num_components: int, test_parameters := [[1], [5], [10], [20]]):
# Build arrays of component types for the test
var all_components = []
var any_components = []
var exclude_components = []
# Use available test components
var available_components = [C_TestA, C_TestB, C_TestC, C_TestD, C_TestE, C_TestF, C_TestG, C_TestH]
# Distribute components across all/any/exclude
for i in num_components:
var comp = available_components[i % available_components.size()]
if i % 3 == 0:
all_components.append(comp)
elif i % 3 == 1:
any_components.append(comp)
else:
exclude_components.append(comp)
# Time generating cache keys 10000 times
var time_ms = PerfHelpers.time_it(func():
for i in 10000:
var key = QueryCacheKey.build(all_components, any_components, exclude_components)
)
PerfHelpers.record_result("cache_key_generation", num_components, time_ms)
## Test cache hit performance with varying world sizes
## This measures the complete cached query execution time
func test_cache_hit_performance(scale: int, test_parameters := [[100], [1000], [10000]]):
# Setup entities
for i in scale:
var entity = Entity.new()
entity.name = "Entity_%d" % i
if i % 2 == 0:
entity.add_component(C_TestA.new())
if i % 3 == 0:
entity.add_component(C_TestB.new())
world.add_entity(entity, null, false)
# Execute query once to populate cache
var __ = world.query.with_all([C_TestA, C_TestB]).execute()
# Time 1000 cache hit queries
var time_ms = PerfHelpers.time_it(func():
for i in 1000:
var entities = world.query.with_all([C_TestA, C_TestB]).execute()
)
PerfHelpers.record_result("cache_hit_performance", scale, time_ms)
## Test cache miss vs cache hit comparison
## This shows the performance difference between cache miss and hit
func test_cache_miss_vs_hit(scale: int, test_parameters := [[100], [1000], [10000]]):
# Setup entities
for i in scale:
var entity = Entity.new()
entity.name = "Entity_%d" % i
if i % 2 == 0:
entity.add_component(C_TestA.new())
if i % 3 == 0:
entity.add_component(C_TestB.new())
world.add_entity(entity, null, false)
# Measure cache miss (first query)
var miss_time_ms = PerfHelpers.time_it(func():
var entities = world.query.with_all([C_TestA, C_TestB]).execute()
)
# Measure cache hit (subsequent query)
var hit_time_ms = PerfHelpers.time_it(func():
var entities = world.query.with_all([C_TestA, C_TestB]).execute()
)
PerfHelpers.record_result("cache_miss", scale, miss_time_ms)
PerfHelpers.record_result("cache_hit", scale, hit_time_ms)
# Print comparison
var speedup = miss_time_ms / hit_time_ms if hit_time_ms > 0 else 0
print(" Cache speedup at scale %d: %.1fx (miss=%.3fms, hit=%.3fms)" % [
scale, speedup, miss_time_ms, hit_time_ms
])
## Test cache key stability across query builder instances
## Ensures the same query produces the same cache key
func test_cache_key_stability():
# Setup some entities
for i in 100:
var entity = Entity.new()
entity.name = "Entity_%d" % i
if i % 2 == 0:
entity.add_component(C_TestA.new())
if i % 3 == 0:
entity.add_component(C_TestB.new())
world.add_entity(entity, null, false)
# Execute same query 100 times and collect cache stats
var initial_stats = world.get_cache_stats()
for i in 100:
var entities = world.query.with_all([C_TestA, C_TestB]).execute()
var final_stats = world.get_cache_stats()
var hits = final_stats.cache_hits - initial_stats.cache_hits
var misses = final_stats.cache_misses - initial_stats.cache_misses
print(" Cache key stability: %d hits, %d misses (%.1f%% hit rate)" % [
hits, misses, (hits * 100.0 / (hits + misses)) if (hits + misses) > 0 else 0
])
# We expect 1 miss (first query) and 99 hits (all subsequent queries)
assert_int(misses).is_equal(1)
assert_int(hits).is_equal(99)
## Test cache invalidation frequency impact
## Measures performance when cache is frequently invalidated
func test_cache_invalidation_impact(scale: int, test_parameters := [[100], [1000], [10000]]):
# Setup entities
for i in scale:
var entity = Entity.new()
entity.name = "Entity_%d" % i
if i % 2 == 0:
entity.add_component(C_TestA.new())
if i % 3 == 0:
entity.add_component(C_TestB.new())
world.add_entity(entity, null, false)
# Time queries with cache invalidation after each query
var with_invalidation_ms = PerfHelpers.time_it(func():
for i in 100:
var entities = world.query.with_all([C_TestA, C_TestB]).execute()
world._query_archetype_cache.clear() # Force cache miss on next query
)
# Time queries without invalidation (all cache hits after first)
var without_invalidation_ms = PerfHelpers.time_it(func():
for i in 100:
var entities = world.query.with_all([C_TestA, C_TestB]).execute()
)
PerfHelpers.record_result("cache_invalidation_impact_with", scale, with_invalidation_ms)
PerfHelpers.record_result("cache_invalidation_impact_without", scale, without_invalidation_ms)
var overhead = (with_invalidation_ms - without_invalidation_ms) / without_invalidation_ms * 100
print(" Cache invalidation overhead at scale %d: %.1f%% (with=%.2fms, without=%.2fms)" % [
scale, overhead, with_invalidation_ms, without_invalidation_ms
])