added CSG toolkit
All checks were successful
Create tag and build when new code gets to main / BumpTag (push) Successful in 20s
Create tag and build when new code gets to main / Test (push) Successful in 7m54s
Create tag and build when new code gets to main / Export (push) Successful in 9m52s

This commit is contained in:
2026-02-06 18:35:38 +01:00
parent 77d405687c
commit 2b74c9e70c
65 changed files with 2723 additions and 1 deletions

View File

@@ -0,0 +1,31 @@
@tool
class_name CSGCircularPattern
extends CSGPattern
@export var radius: float = 5.0
@export var points: int = 8
@export var layers: int = 1
## If 0 use template_size.y
@export var layer_height: float = 0.0
## Additional gap added per layer beyond base height
@export var layer_spacing: float = 0.0
func _generate(ctx: Dictionary) -> Array:
var positions: Array = []
var template_size: Vector3 = ctx.get("template_size", Vector3.ONE)
var rad: float = max(0.0, radius)
var count: int = max(1, points)
if count <= 1:
return [Vector3.ZERO]
var lyr_count = max(1, layers)
var base_y = layer_height if layer_height > 0.0 else template_size.y
var step_y = base_y + max(0.0, layer_spacing)
for i in range(count):
var angle = (i * TAU) / count
var base_pos = Vector3(cos(angle) * rad, 0, sin(angle) * rad)
for layer in range(lyr_count):
positions.append(base_pos + Vector3(0, layer * step_y, 0))
return positions
func get_estimated_count(ctx: Dictionary) -> int:
return max(1, points) * max(1, layers)

View File

@@ -0,0 +1 @@
uid://b3ws8vwtsqmjt

View File

@@ -0,0 +1,19 @@
@tool
@abstract
class_name CSGPattern
extends Resource
## Base pattern interface. Subclasses implement _generate(RepeaterContext) returning Array[Vector3].
# Common interface call
func generate(ctx: Dictionary) -> Array:
# ctx expected keys: repeat: Vector3i, spacing: Vector3, rng: RandomNumberGenerator, step_spacing: Vector3, user: Node (repeater)
return _generate(ctx)
func _generate(_ctx: Dictionary) -> Array:
return []
func get_estimated_count(ctx: Dictionary) -> int:
# Default: fallback to generating (may be overridden for performance/accuracy)
var arr = _generate(ctx)
return arr.size()

View File

@@ -0,0 +1 @@
uid://dbavf0pl65chb

View File

@@ -0,0 +1,33 @@
@tool
class_name CSGGridPattern
extends CSGPattern
@export var count_x: int = 2
@export var count_y: int = 1
@export var count_z: int = 1
@export var spacing: Vector3 = Vector3.ZERO
## If true, automatically adds template AABB size to spacing for proper object separation
@export var use_template_size: bool = true
func _generate(ctx: Dictionary) -> Array:
var positions: Array = []
var template_size: Vector3 = ctx.get("template_size", Vector3.ONE)
var jitter: float = ctx.get("position_jitter", 0.0)
var rng: RandomNumberGenerator = ctx.rng
var cx = max(1, count_x)
var cy = max(1, count_y)
var cz = max(1, count_z)
var base_step: Vector3 = (template_size if use_template_size else Vector3.ZERO) + spacing
for x in range(cx):
for y in range(cy):
for z in range(cz):
var position = Vector3(x * base_step.x, y * base_step.y, z * base_step.z)
if jitter > 0.0:
position += Vector3(
rng.randf_range(-jitter, jitter),
rng.randf_range(-jitter, jitter),
rng.randf_range(-jitter, jitter)
)
positions.append(position)
return positions

View File

@@ -0,0 +1 @@
uid://bc1sxg4vy464o

View File

@@ -0,0 +1,124 @@
@tool
class_name CSGNoisePattern
extends CSGPattern
## Generates instance positions based on noise sampling in a 3D volume
## Instances are placed where noise value exceeds the threshold
##
@export var bounds: Vector3 = Vector3(10, 10, 10)
##
@export var sample_density: Vector3i = Vector3i(20, 1, 20)
##
@export_range(0.0, 1.0) var noise_threshold: float = 0.5
##
@export var noise_seed: int = 0
##
@export_range(0.01, 100) var noise_frequency: float = 0.1
##
@export_enum("Simplex", "Simplex Smooth", "Cellular", "Perlin", "Value Cubic", "Value") var noise_type: int = 0
##
@export_enum("None", "OpenSimplex2", "OpenSimplex2S", "Cellular", "Perlin", "Value Cubic", "Value") var fractal_type: int = 0
##
@export_range(1, 8) var fractal_octaves: int = 3
##
@export var use_template_size: bool = false
var noise: FastNoiseLite
func _init():
noise = FastNoiseLite.new()
_update_noise()
func _update_noise():
if not noise:
noise = FastNoiseLite.new()
noise.seed = noise_seed
noise.frequency = noise_frequency
noise.fractal_octaves = fractal_octaves
# Map noise_type enum to FastNoiseLite types
match noise_type:
0: noise.noise_type = FastNoiseLite.TYPE_SIMPLEX
1: noise.noise_type = FastNoiseLite.TYPE_SIMPLEX_SMOOTH
2: noise.noise_type = FastNoiseLite.TYPE_CELLULAR
3: noise.noise_type = FastNoiseLite.TYPE_PERLIN
4: noise.noise_type = FastNoiseLite.TYPE_VALUE_CUBIC
5: noise.noise_type = FastNoiseLite.TYPE_VALUE
# Map fractal_type enum to FastNoiseLite fractal types
match fractal_type:
0: noise.fractal_type = FastNoiseLite.FRACTAL_NONE
1: noise.fractal_type = FastNoiseLite.FRACTAL_FBM
2: noise.fractal_type = FastNoiseLite.FRACTAL_RIDGED
3: noise.fractal_type = FastNoiseLite.FRACTAL_PING_PONG
func _generate(ctx: Dictionary) -> Array:
_update_noise()
var positions: Array = []
var template_size: Vector3 = ctx.get("template_size", Vector3.ONE) if use_template_size else Vector3.ZERO
var jitter: float = ctx.get("position_jitter", 0.0)
var rng: RandomNumberGenerator = ctx.get("rng", RandomNumberGenerator.new())
var effective_bounds = bounds
var sample_count = sample_density
# Calculate step size for sampling
var step = Vector3(
effective_bounds.x / max(1, sample_count.x),
effective_bounds.y / max(1, sample_count.y),
effective_bounds.z / max(1, sample_count.z)
)
# Start from negative half to center the pattern around origin
var start_pos = -effective_bounds * 0.5
# Sample noise at regular intervals
for x in range(sample_count.x):
for y in range(sample_count.y):
for z in range(sample_count.z):
var sample_pos = start_pos + Vector3(
x * step.x + step.x * 0.5,
y * step.y + step.y * 0.5,
z * step.z + step.z * 0.5
)
# Get noise value at this position (normalized to 0-1)
var noise_value = (noise.get_noise_3d(sample_pos.x, sample_pos.y, sample_pos.z) + 1.0) * 0.5
# Only place instance if noise exceeds threshold
if noise_value >= noise_threshold:
var final_pos = sample_pos
# Apply template size offset if enabled
if use_template_size:
final_pos += template_size * Vector3(x, y, z)
# Apply jitter
if jitter > 0.0:
final_pos += Vector3(
rng.randf_range(-jitter, jitter),
rng.randf_range(-jitter, jitter),
rng.randf_range(-jitter, jitter)
)
positions.append(final_pos)
return positions
func get_estimated_count(ctx: Dictionary) -> int:
# Rough estimate: total samples * (1 - threshold)
# Higher threshold = fewer instances
var total_samples = max(1, sample_density.x) * max(1, sample_density.y) * max(1, sample_density.z)
var estimated = int(total_samples * (1.0 - noise_threshold))
return max(1, estimated)

View File

@@ -0,0 +1 @@
uid://3il6xs7cr7gj

View File

@@ -0,0 +1,39 @@
@tool
class_name CSGSpiralPattern
extends CSGPattern
@export var turns: float = 2.0
@export var start_radius: float = 0.5
@export var end_radius: float = 5.0
## If > 0 overrides vertical spread based on repeat & step
@export var total_height: float = 0.0
@export var use_radius_curve: bool = false
@export var radius_curve: Curve
@export var points: int = 32
func _generate(ctx: Dictionary) -> Array:
var positions: Array = []
var template_size: Vector3 = ctx.get("template_size", Vector3.ONE)
var t_turns: float = max(0.1, turns)
var r_start: float = max(0.0, start_radius)
var r_end: float = max(r_start, end_radius)
var total: int = max(2, points)
if total <= 1:
return [Vector3.ZERO]
for i in range(total):
var t: float = float(i) / float(total - 1)
var angle = t * t_turns * TAU
var curve_t = t
if use_radius_curve and radius_curve and radius_curve.get_point_count() > 0:
curve_t = clamp(radius_curve.sample(t), 0.0, 1.0)
var radius = lerp(r_start, r_end, curve_t)
var y_pos: float = t * (total_height if total_height > 0.0 else template_size.y * 1.0)
positions.append(Vector3(
cos(angle) * radius,
y_pos,
sin(angle) * radius
))
return positions
func get_estimated_count(ctx: Dictionary) -> int:
return max(2, points)

View File

@@ -0,0 +1 @@
uid://belgcjd0ys212